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Real Performance of FPGAs Tops GPUs in 
the Race to Accelerate AI

As artificial intelligence (AI) models increase in size and complexity at a relentless 
clip of approximately 10X per year [2], providers of AI solutions face great pressure 
to reduce time to market, improve performance, and quickly adapt to a changing 
landscape. Such increasing model complexity has led to AI-optimized hardware. 
For example, in recent years, graphics processing units (GPUs) have integrated AI-
optimized arithmetic units to increase their AI compute throughput. Nevertheless, 
as AI algorithms and workloads evolve, they can exhibit properties that make 
it challenging to fully utilize the available AI compute throughput, unless the 
hardware offers extensive flexibility to accommodate such algorithmic changes. 
Recent papers (e.g., [1], [3]) have shown that for many AI workloads, it can be 
challenging to achieve the full compute capacity reported by GPU vendors. Even for 
highly parallel computation such as general matrix multiplication (GEMM), GPUs can 
only achieve high utilization at certain large matrix sizes [4]. Therefore, even though 
GPUs offer high AI compute throughput in theory (often called ‘peak throughput’), 
when running AI applications, the real performance achieved could be much lower.

FPGAs offer a different approach to AI-optimized hardware.  Unlike GPUs, FPGAs 
offer unique fine-grained spatial reconfigurability. This means that FPGA resources 
can be configured to perform the exact mathematical functions in precisely the 
correct order to implement the desired operation. The output of each function 
can be routed directly to the input of the function that needs it. This approach 
allows greater flexibility to accommodate specific AI algorithms and application 
characteristics that enable improved utilization of available FPGA compute 
capabilities. Furthermore, while FPGAs require hardware expertise to program 
(through a hardware description language), specialized soft processors (a.k.a. 
overlays) [1], [3] allow FPGA programming in a similar fashion as processors. The 
FPGA programming is done purely via software toolchains and abstracts away any 
FPGA-specific hardware complexity. 

The discussion in this white paper is based on results that have been published in 
the 2020 IEEE International Conference on Field Programmable Technology (FPT) 
[1]. It presents the first performance evaluation of the Intel® Stratix® 10 NX FPGA 
in comparison to the NVIDIA T4 and V100 GPUs. This performance evaluation is 
done over a suite of real-time inference workloads. For the FPGA, the workloads are 
deployed using an implementation of a soft AI processor overlay called the Neural 
Processing Unit (NPU) with a software toolchain that allows you to program the 
FPGA without invoking any FPGA-specific Electronic Design Automation (EDA) tools. 
Results show that for these workloads, the Intel Stratix 10 NX FPGA achieves far 
better utilization and performance than the NVIDIA T4 and V100 GPUs.
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Figure 2.  	 (Left) GPU data is read from the memory system processed by the Tensor Core and written back to the 
memory system. (Right) FPGA data can be read from memory, but data flow can be arranged to one or 
more Tensor Cores in parallel.  The output can be consumed by any number of Tensor Cores with minimal 
transfer overhead. Data can be written back to memory or routed anywhere else [5].

In 2020, Intel announced its first AI-optimized FPGAs, the Intel Stratix 10 NX devices. The Intel Stratix 10 NX FPGA includes 
AI Tensor Blocks, which enable the FPGA to deliver up to 143 INT8 and 286 INT4 peak AI compute TOPS or 143 Block Floating 
Point 16 (BFP16) and 286 Block Floating Point 12 (BFP12) TFLOPS [2]. Recent publications (e.g., [6] [7]) have shown that Block 
Floating Point precision provides greater accuracy and lower cost for many AI workloads.  Similarly, NVIDIA GPUs offer Tensor 
Cores. But GPU Tensor Cores and FPGA AI Tensor Blocks are very different from an architecture perspective as illustrated in 
Figures 1 and  2. A few key differences are described in this section, since understanding the basic architectural variances can 
help provide valuable context and background for the results discussed later in this white paper.

Background on FPGA and GPU Architectures 

Figure 1.  	 Both GPUs and FPGAs have Tensor Cores. But FPGAs have soft logic that can be woven in and out of the 
data flow [5]
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Figure 3.  	High-level overview of the NPU overlay architecture and the front-end tool chain for programming 
the NPU soft processor

Communication efficiency: GPU Tensor Cores communicate 
via memory systems and do not have direct connections 
among them. On the other hand, FPGA AI Tensor Blocks can 
be directly connected to each other using the flexible FPGA 
spatial fabric providing options to scale optimized compute 
resources that are not available in GPUs (see Figures 1 and 2). 
Thus, FPGAs provide efficient data coordination across tensor 
units.

Consolidation of results: The partial result of each tensor 
unit often needs to be combined to form the final output, 
such as concatenating or reducing output matrix blocks 
produced by multiple tensor units to arrive at a final output 
matrix. In GPUs, Tensor Core outputs must be synchronized 
and combined via the memory system that can introduce 
latency. In FPGAs, the fabric can directly gather the results 
in a way optimized for the target computation. The direct 
links across the FPGA AI Tensor Blocks can also be used to 
improve efficiency further (see Figures 1 and 2). All of this can 
happen on-chip with optimized number of cycles.

Consumption of results: Outputs of tensor units are often 
consumed by the next part of the application such as an 
activation function. In GPUs, consolidated tensor results must 
be stored in memory system (hierarchy of on-chip and off-
chip memories). Additionally, due to synchronization that was 
done during the tensor operation, the GPU core pipelines may 
need to ramp-up to execute the next part of the application 
that takes the tensor results as its inputs. These delays and 
inefficiencies can be avoided in FPGAs since their fine-
grained nature enables the next part of the application to be 
implemented in the fabric to directly receive the tensor result. 

Sharing across tensor units: In AI computation, input tensors 
may be shared across multiple tensor units. In GPUs, this 
sharing is inefficient because no direct broadcast path is 
available across multiple Tensor Cores. Inputs are first loaded 
into a local register file via the memory system before a 
Tensor Core can access it. In FPGAs, a “broadcast network” 
can be implemented in the fabric, and the direct link across a 
set of Tensor Blocks also facilitate input broadcast. 

Matrix conversion: GPU Tensor Cores operate on a specific, 
predefined matrix layout. Hence, if a different matrix layout is 
required by the target application, it must first be converted 
into the predefined layout present in the GPU. The overheads 
for conversion could be non-trivial as it can require multiple 
read/write operations to the memory subsystem. For 
example, the GPU may need to read data from memory, 
shuffle some bytes, write back to memory and repeat for 
the subsequent blocks until the new format is ready. Then 
the GPU reads the new matrix format from memory, does 
computation and then writes the result back to memory. 
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In FPGAs, any needed matrix format conversion logic can 
be implemented efficiently in-line on the FPGA fabric by 
programming the soft logic to convert from the desired input 
matrix format into vectors that go into the AI Tensor Blocks. 
This method greatly reduces the latency.

Programming flow: GPUs can be programmed via software 
application programming interfaces (APIs) and libraries. 
But FPGAs offer multiple options. Using conventional FPGA 
developer flows, AI-optimized FPGAs can be programmed 
at cycle- and bit-level via register transfer level (RTL). 
Additionally, there are FPGA developer flows that offer higher 
levels of abstraction and software programmability. A soft 
processor overlay is one such example that we will discuss 
briefly later in this white paper, but more details can be found 
in [1]. 

The introduction of tensor compute in AI-optimized hardware 
has given rise to peak TOPS as a key metric when comparing 
acceleration solutions. However, peak TOPs metrics can 
be misleading, as these levels of performance can only be 
attained when tensor compute is utilized 100%. This is not 
the case in real applications. Utilization of tensor compute is 
typically affected by – (1) mapping of a workload to available 
tensor compute units; (2) end-to-end system-level overheads 
of bringing the data in/out of the hardware. The work 
presented in [1] studies the actual achievable performance 
of AI-optimized FPGAs and GPUs through evaluation of both 
compute and system-level performance on key AI workloads. 

Intel researchers have developed an AI soft processor called 
the Neural Processing Unit (NPU). This AI soft processor is 
designed for low-latency, low-batch inference. It maintains 
model persistence by keeping all model-weights on one or 
multiple connected FPGAs to improve latency. 

As shown in Figure 3, a complete NPU software toolchain 
has been implemented. The toolchain allows an application 
developer to write NPU programs in a higher-level 
programming language such as Python. This approach 
abstracts away the FPGA hardware complexity and allows an 
application developer to rapidly experiment with various AI 
models [1]. Low level details of the NPU architecture and the 
software toolchain are outside the scope of this white paper 
and are described in [1].

Beyond Peak Performance
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The key area of focus in this study is the compute 
performance. Figure 4 compares the performance of the 
NPU on the Intel Stratix 10 NX FPGA to the NVIDIA T4 and 
V100 GPUs across a wide range of deep learning workloads 
including Multilayer Perceptron (MLP), General Matrix Vector 
Multiplication (GEMV), Recurrent Neural Network (RNN), Long 
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). 
GEMV and MLP are specified by their matrix sizes, while 
RNNs, LSTMs, and GRUs are specified with their sizes and 
number of time steps. For example, LSTM-1024-16 workload 
describes an LSTM with 1024x1024 matrices and 16 time 
steps.    

As shown in Figure 4, the Intel Stratix 10 NX FPGA 
implementing an NPU delivers significantly higher TOPS 
performance than both GPUs for batch sizes of 3 and 6, 
and similar or better TOPS up to batch sizes of 32. The best 
speedup is achieved at batch size 6 that the NPU is optimized 
for, where the Intel Stratix 10 NX device shows approximately 
24X better performance compared to the NVIDIA T4, and 
12X better performance compared to the NVIDIA V100. Even 
at batch size 3, where the Intel NPU is only 50% utilized, the 
Intel Stratix 10 NX FPGA displays approximately 22X and 
9X average performance advantage over NVIDIA T4 and 
NVIDIA V100 GPUs respectively. For batch sizes divisible by 
6, as shown by dotted lines in Figure 4, the Intel NPU is fully 
utilized to achieve 100% efficiency. At medium batch size of 
32, the Intel Stratix 10 NX FPGA has better performance than 
the NVIDIA T4 and comparable performance to the much 
larger NVIDIA V100. The bottom right histogram summarizes 
the geometric mean (geomean) speedups of all studied 
workloads relative to the NVIDIA T4 performance at various 
batch sizes.    

In Figure 4, the top right histogram shows the geomean 
utilization of the Intel NPU compared to both NVIDIA T4 and 
NVIDIA V100 GPUs at all the studied batch sizes. The Intel 
NPU achieves a geomean utilization of 37.1% at batch size 
6 compared to 1.5% and 3% for the NVIDIA T4 and NVIDIA 
V100, respectively. FPGAs achieve significantly higher 
utilization of their compute resources compared to GPUs due 
to architectural differences described earlier in this paper. 
These differences enable FPGAs to apply their compute 
resources much more efficiently than GPUs, which result in 
much higher performance in real-world applications.

Results published in [1] highlight another key value 
proposition of the Intel Stratix 10 NX FPGA, end-to-end 
performance on Recurrent Neural Network (RNN) workloads 
for short and long sequences. Figure 5 shows system-
level execution time of RNN workloads at batch size 6 and 
sequence lengths of 8 and 256. After accounting for system 
overheads (e.g. data transfers in and out of the device, and 
initialization), the Intel FPGA system achieves 16X-19X 
higher performance than the NVIDIA T4 GPU and 15X-25X 
higher performance than the NVIDIA V100 GPU for short 
sequences. Additionally, for long sequences, the Intel Stratix 
10 NX FPGA system achieves 11X-16X higher performance 
than the NVIDIA T4 GPU and 5X-6X higher performance than 
the NVIDIA V100 GPU. This is because FPGA’s finer grained 
programmability allows efficient overlapping of compute with 
data transfers and reduces initialization overhead [1].

Figure 4.  	Performance of NVIDIA V100 and NVIDIA T4 vs. NPU on the Intel Stratix 10 NX FPGA at various batch sizes. 
Dashed lines show NPU performance for batch sizes divisible by 6 [1].

Figure 4.  	System-level execution time of RNN workloads for 
short and long sequences (lower is better) [1]
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It is abundantly clear from these results that Intel Stratix 10 
NX FPGAs can not only achieve an order of magnitude better 
performance than GPUs at low-batch real-time inference, but 
also compete effectively with high-batch inference.

The Intel Stratix 10 NX FPGA delivers much better end-to-
end performance numbers due to its architectural differences 
and flexible programming model. It does not suffer from the 
same overheads that GPUs have.
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Table 1.  	 Summary of average performance comparison 
of AI workloads across several combinations of 
configurations [1]

Table 2.  	 End-to-end system level comparison of RNN 
workloads for batch size 6 [1]

Conclusion For Additional Information

References

The Intel Stratix 10 NX FPGA, with its highly flexible 
architecture, delivers 24X higher average performance than 
an NVIDIA T4 GPU and 12X higher average performance than 
an NVIDIA V100 GPU (as summarized in tables 1 and 2). This 
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With its high arithmetic density, the Intel Stratix 10 NX FPGA 
delivers features that are critical for high-performance, 
latency-sensitive AI systems where real achievable 
performance is a key differentiator. 

Batch Size
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6 24.2X 11.7X
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6 256 11X - 16X 5X - 6X
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