
White Paper

Table of Contents

Introduction . . 1

Background on FPGA and GPU
Architectures. . 2

Beyond Peak Performance. 3

AI Soft Processor. .3

FPGA vs. GPU Compute Performance
Comparison . . 4

End-to-End Performance Comparison. 4

Conclusion. .5

For Additional Information. 5

References . . 5

Authors

Eriko Nurvitadhi
Sr. Research Scientist

Programmable Solutions Group
Intel Corporation

Rohit D’Souza
AI Product Marketing Manager

Programmable Solutions Group
Intel Corporation

Martin Won
Senior Member of Technical Staff

Programmable Solutions Group
Intel Corporation

Artificial Intelligence
FPGA

Real Performance of FPGAs Tops GPUs in
the Race to Accelerate AI

As artificial intelligence (AI) models increase in size and complexity at a relentless
clip of approximately 10X per year [2], providers of AI solutions face great pressure
to reduce time to market, improve performance, and quickly adapt to a changing
landscape. Such increasing model complexity has led to AI-optimized hardware.
For example, in recent years, graphics processing units (GPUs) have integrated AI-
optimized arithmetic units to increase their AI compute throughput. Nevertheless,
as AI algorithms and workloads evolve, they can exhibit properties that make
it challenging to fully utilize the available AI compute throughput, unless the
hardware offers extensive flexibility to accommodate such algorithmic changes.
Recent papers (e.g., [1], [3]) have shown that for many AI workloads, it can be
challenging to achieve the full compute capacity reported by GPU vendors. Even for
highly parallel computation such as general matrix multiplication (GEMM), GPUs can
only achieve high utilization at certain large matrix sizes [4]. Therefore, even though
GPUs offer high AI compute throughput in theory (often called ‘peak throughput’),
when running AI applications, the real performance achieved could be much lower.

FPGAs offer a different approach to AI-optimized hardware. Unlike GPUs, FPGAs
offer unique fine-grained spatial reconfigurability. This means that FPGA resources
can be configured to perform the exact mathematical functions in precisely the
correct order to implement the desired operation. The output of each function
can be routed directly to the input of the function that needs it. This approach
allows greater flexibility to accommodate specific AI algorithms and application
characteristics that enable improved utilization of available FPGA compute
capabilities. Furthermore, while FPGAs require hardware expertise to program
(through a hardware description language), specialized soft processors (a.k.a.
overlays) [1], [3] allow FPGA programming in a similar fashion as processors. The
FPGA programming is done purely via software toolchains and abstracts away any
FPGA-specific hardware complexity.

The discussion in this white paper is based on results that have been published in
the 2020 IEEE International Conference on Field Programmable Technology (FPT)
[1]. It presents the first performance evaluation of the Intel® Stratix® 10 NX FPGA
in comparison to the NVIDIA T4 and V100 GPUs. This performance evaluation is
done over a suite of real-time inference workloads. For the FPGA, the workloads are
deployed using an implementation of a soft AI processor overlay called the Neural
Processing Unit (NPU) with a software toolchain that allows you to program the
FPGA without invoking any FPGA-specific Electronic Design Automation (EDA) tools.
Results show that for these workloads, the Intel Stratix 10 NX FPGA achieves far
better utilization and performance than the NVIDIA T4 and V100 GPUs.

Introduction

2

White Paper | Real Performance of FPGAs Tops GPUs in the Race to Accelerate AI

Figure 2. 	 (Left) GPU data is read from the memory system processed by the Tensor Core and written back to the
memory system. (Right) FPGA data can be read from memory, but data flow can be arranged to one or
more Tensor Cores in parallel. The output can be consumed by any number of Tensor Cores with minimal
transfer overhead. Data can be written back to memory or routed anywhere else [5].

In 2020, Intel announced its first AI-optimized FPGAs, the Intel Stratix 10 NX devices. The Intel Stratix 10 NX FPGA includes
AI Tensor Blocks, which enable the FPGA to deliver up to 143 INT8 and 286 INT4 peak AI compute TOPS or 143 Block Floating
Point 16 (BFP16) and 286 Block Floating Point 12 (BFP12) TFLOPS [2]. Recent publications (e.g., [6] [7]) have shown that Block
Floating Point precision provides greater accuracy and lower cost for many AI workloads. Similarly, NVIDIA GPUs offer Tensor
Cores. But GPU Tensor Cores and FPGA AI Tensor Blocks are very different from an architecture perspective as illustrated in
Figures 1 and 2. A few key differences are described in this section, since understanding the basic architectural variances can
help provide valuable context and background for the results discussed later in this white paper.

Background on FPGA and GPU Architectures

Figure 1. 	 Both GPUs and FPGAs have Tensor Cores. But FPGAs have soft logic that can be woven in and out of the
data flow [5]

3

Figure 3. 	High-level overview of the NPU overlay architecture and the front-end tool chain for programming
the NPU soft processor

Communication efficiency: GPU Tensor Cores communicate
via memory systems and do not have direct connections
among them. On the other hand, FPGA AI Tensor Blocks can
be directly connected to each other using the flexible FPGA
spatial fabric providing options to scale optimized compute
resources that are not available in GPUs (see Figures 1 and 2).
Thus, FPGAs provide efficient data coordination across tensor
units.

Consolidation of results: The partial result of each tensor
unit often needs to be combined to form the final output,
such as concatenating or reducing output matrix blocks
produced by multiple tensor units to arrive at a final output
matrix. In GPUs, Tensor Core outputs must be synchronized
and combined via the memory system that can introduce
latency. In FPGAs, the fabric can directly gather the results
in a way optimized for the target computation. The direct
links across the FPGA AI Tensor Blocks can also be used to
improve efficiency further (see Figures 1 and 2). All of this can
happen on-chip with optimized number of cycles.

Consumption of results: Outputs of tensor units are often
consumed by the next part of the application such as an
activation function. In GPUs, consolidated tensor results must
be stored in memory system (hierarchy of on-chip and off-
chip memories). Additionally, due to synchronization that was
done during the tensor operation, the GPU core pipelines may
need to ramp-up to execute the next part of the application
that takes the tensor results as its inputs. These delays and
inefficiencies can be avoided in FPGAs since their fine-
grained nature enables the next part of the application to be
implemented in the fabric to directly receive the tensor result.

Sharing across tensor units: In AI computation, input tensors
may be shared across multiple tensor units. In GPUs, this
sharing is inefficient because no direct broadcast path is
available across multiple Tensor Cores. Inputs are first loaded
into a local register file via the memory system before a
Tensor Core can access it. In FPGAs, a “broadcast network”
can be implemented in the fabric, and the direct link across a
set of Tensor Blocks also facilitate input broadcast.

Matrix conversion: GPU Tensor Cores operate on a specific,
predefined matrix layout. Hence, if a different matrix layout is
required by the target application, it must first be converted
into the predefined layout present in the GPU. The overheads
for conversion could be non-trivial as it can require multiple
read/write operations to the memory subsystem. For
example, the GPU may need to read data from memory,
shuffle some bytes, write back to memory and repeat for
the subsequent blocks until the new format is ready. Then
the GPU reads the new matrix format from memory, does
computation and then writes the result back to memory.

White Paper | Real Performance of FPGAs Tops GPUs in the Race to Accelerate AI

In FPGAs, any needed matrix format conversion logic can
be implemented efficiently in-line on the FPGA fabric by
programming the soft logic to convert from the desired input
matrix format into vectors that go into the AI Tensor Blocks.
This method greatly reduces the latency.

Programming flow: GPUs can be programmed via software
application programming interfaces (APIs) and libraries.
But FPGAs offer multiple options. Using conventional FPGA
developer flows, AI-optimized FPGAs can be programmed
at cycle- and bit-level via register transfer level (RTL).
Additionally, there are FPGA developer flows that offer higher
levels of abstraction and software programmability. A soft
processor overlay is one such example that we will discuss
briefly later in this white paper, but more details can be found
in [1].

The introduction of tensor compute in AI-optimized hardware
has given rise to peak TOPS as a key metric when comparing
acceleration solutions. However, peak TOPs metrics can
be misleading, as these levels of performance can only be
attained when tensor compute is utilized 100%. This is not
the case in real applications. Utilization of tensor compute is
typically affected by – (1) mapping of a workload to available
tensor compute units; (2) end-to-end system-level overheads
of bringing the data in/out of the hardware. The work
presented in [1] studies the actual achievable performance
of AI-optimized FPGAs and GPUs through evaluation of both
compute and system-level performance on key AI workloads.

Intel researchers have developed an AI soft processor called
the Neural Processing Unit (NPU). This AI soft processor is
designed for low-latency, low-batch inference. It maintains
model persistence by keeping all model-weights on one or
multiple connected FPGAs to improve latency.

As shown in Figure 3, a complete NPU software toolchain
has been implemented. The toolchain allows an application
developer to write NPU programs in a higher-level
programming language such as Python. This approach
abstracts away the FPGA hardware complexity and allows an
application developer to rapidly experiment with various AI
models [1]. Low level details of the NPU architecture and the
software toolchain are outside the scope of this white paper
and are described in [1].

Beyond Peak Performance

AI Soft Processor

Tensor
Processing

Complex

Vector Processing
Complex

Loader

Instruction and Control

Soft AI Processor for FPGA

Soft Proc
Compiler

AI Programs

4

The key area of focus in this study is the compute
performance. Figure 4 compares the performance of the
NPU on the Intel Stratix 10 NX FPGA to the NVIDIA T4 and
V100 GPUs across a wide range of deep learning workloads
including Multilayer Perceptron (MLP), General Matrix Vector
Multiplication (GEMV), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU).
GEMV and MLP are specified by their matrix sizes, while
RNNs, LSTMs, and GRUs are specified with their sizes and
number of time steps. For example, LSTM-1024-16 workload
describes an LSTM with 1024x1024 matrices and 16 time
steps.

As shown in Figure 4, the Intel Stratix 10 NX FPGA
implementing an NPU delivers significantly higher TOPS
performance than both GPUs for batch sizes of 3 and 6,
and similar or better TOPS up to batch sizes of 32. The best
speedup is achieved at batch size 6 that the NPU is optimized
for, where the Intel Stratix 10 NX device shows approximately
24X better performance compared to the NVIDIA T4, and
12X better performance compared to the NVIDIA V100. Even
at batch size 3, where the Intel NPU is only 50% utilized, the
Intel Stratix 10 NX FPGA displays approximately 22X and
9X average performance advantage over NVIDIA T4 and
NVIDIA V100 GPUs respectively. For batch sizes divisible by
6, as shown by dotted lines in Figure 4, the Intel NPU is fully
utilized to achieve 100% efficiency. At medium batch size of
32, the Intel Stratix 10 NX FPGA has better performance than
the NVIDIA T4 and comparable performance to the much
larger NVIDIA V100. The bottom right histogram summarizes
the geometric mean (geomean) speedups of all studied
workloads relative to the NVIDIA T4 performance at various
batch sizes.

In Figure 4, the top right histogram shows the geomean
utilization of the Intel NPU compared to both NVIDIA T4 and
NVIDIA V100 GPUs at all the studied batch sizes. The Intel
NPU achieves a geomean utilization of 37.1% at batch size
6 compared to 1.5% and 3% for the NVIDIA T4 and NVIDIA
V100, respectively. FPGAs achieve significantly higher
utilization of their compute resources compared to GPUs due
to architectural differences described earlier in this paper.
These differences enable FPGAs to apply their compute
resources much more efficiently than GPUs, which result in
much higher performance in real-world applications.

Results published in [1] highlight another key value
proposition of the Intel Stratix 10 NX FPGA, end-to-end
performance on Recurrent Neural Network (RNN) workloads
for short and long sequences. Figure 5 shows system-
level execution time of RNN workloads at batch size 6 and
sequence lengths of 8 and 256. After accounting for system
overheads (e.g. data transfers in and out of the device, and
initialization), the Intel FPGA system achieves 16X-19X
higher performance than the NVIDIA T4 GPU and 15X-25X
higher performance than the NVIDIA V100 GPU for short
sequences. Additionally, for long sequences, the Intel Stratix
10 NX FPGA system achieves 11X-16X higher performance
than the NVIDIA T4 GPU and 5X-6X higher performance than
the NVIDIA V100 GPU. This is because FPGA’s finer grained
programmability allows efficient overlapping of compute with
data transfers and reduces initialization overhead [1].

Figure 4. 	Performance of NVIDIA V100 and NVIDIA T4 vs. NPU on the Intel Stratix 10 NX FPGA at various batch sizes.
Dashed lines show NPU performance for batch sizes divisible by 6 [1].

Figure 4. 	System-level execution time of RNN workloads for
short and long sequences (lower is better) [1]

White Paper | Real Performance of FPGAs Tops GPUs in the Race to Accelerate AI

FPGA vs. GPU Compute Performance
Comparison

End-to-End Performance Comparison

40

30

20

10

0
3 6 8 32 256

GEMV-1792

Batch Size

20

15

10

5

0
3 6 8 32 256

RNN-1024-8

Batch Size

15

10

5

0
3 6 8 32 256

MLP-1024

Batch Size

T
hr

ou
gh

pu
t (

T
O

P
S

)

25

20

15

5

10

0
3 6 8 32 256

GRU-512-256

Batch Size

T
hr

ou
gh

pu
t (

T
O

P
S

)
40

30

20

10

0
3 6 8 32 256

RNN-1792-256

Batch Size

40

30

20

10

0
3 6 8 32 256

Geomean Util. (%)

Batch Size

NPU (Intel® Stratix® 10 NX)
NPU (Intel Stratix 10 NX
batch size div. by 6)
Nvidia T4

Nvidia V100

25

20

15

5

10

0
3 6 8 32 256

Geomean Speedups

Batch Size

30

20

10

0
3 6 8 32 256

GRU-1152-8

Batch Size

20

15

10

5

0
3 6 8 32 256

LSTM-512-8

Batch Size

40

30

20

10

0
3 6 8 32 256

LSTM-1024-8

Batch Size

512 1152 1792
RNN Size

512 1152 1792
RNN Size

0.8

0.6

0.4

0.2

0

20

15

10

5

0

Seq. Length = 8 Seq. Length = 256

Hidden Vec. Init. Data Transfer + Packet Enc. Core Compute

E
xe

cu
tio

n
T

im
e

(m
s)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel S

tratix 10
 N

X
)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel S

tratix 10
 N

X
)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel S

tratix 10
 N

X
)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel S

tratix 10
 N

X
)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel S

tratix 10
 N

X
)

N
vidia V

10
0

N
vidia T

4

N
P

U
 (Intel® S

tratix® 10
 N

X
)

It is abundantly clear from these results that Intel Stratix 10
NX FPGAs can not only achieve an order of magnitude better
performance than GPUs at low-batch real-time inference, but
also compete effectively with high-batch inference.

The Intel Stratix 10 NX FPGA delivers much better end-to-
end performance numbers due to its architectural differences
and flexible programming model. It does not suffer from the
same overheads that GPUs have.

5

White Paper | Real Performance of FPGAs Tops GPUs in the Race to Accelerate AI

Table 1. 	 Summary of average performance comparison
of AI workloads across several combinations of
configurations [1]

Table 2. 	 End-to-end system level comparison of RNN
workloads for batch size 6 [1]

Conclusion For Additional Information

References

The Intel Stratix 10 NX FPGA, with its highly flexible
architecture, delivers 24X higher average performance than
an NVIDIA T4 GPU and 12X higher average performance than
an NVIDIA V100 GPU (as summarized in tables 1 and 2). This
order of magnitude higher performance over the NVIDIA GPU
makes the Intel Stratix 10 NX FPGA a better choice for the
following applications requiring real-time inference:

•	 Natural language processing

•	 Financial fraud prevention

•	 Real-time video analytics

For more details, visit the Intel Stratix 10 NX FPGA website.

[1] 	 E. Nurvitadhi et al., “Beyond Peak Performance:
Comparing the Real Performance of AI-Optimized FPGAs
and GPUs”, 2020 IEEE International Conference on Field
Programmable Technology (FPT). Available (Author’s
version of conference paper): Intel® Stratix® 10 NX AI-
Optimized FPGA Vs GPUs

[2] 	 R. D’Souza et al., “Pushing AI Boundaries with Scalable
Compute-Focused FPGAs”, 2020. [Online]. Available:
www.intel.com/scalable-compute-fpga

[3] 	 J. Fowers et al., “A Configurable Cloud-Scale DNN
Processor for RealTime AI,” in International Symposium
on Computer Architecture (ISCA), 2018, pp. 1–14

[4] 	 Z. Jia et al., “Dissecting the NVidia Turing T4 GPU via
Microbenchmarking,” arXiv preprint arXiv:1903.07486,
2019

[5] 	 M. Langhammer, “A new FPGA Architecture Optimized for
AI Acceleration”, Linley Fall Processor Conference 2020 –
The Linley Group. [Online]

	 Available: Intel: A New FPGA Architecture Optimized for
AI Acceleration - YouTube

[6] 	 B. Rouhani et al., “Pushing the Limits of Narrow Precision
Inferencing at Cloud Scale with Microsoft Floating Point”,
in Neural Information Processing Systems (NeurIPS),
2020

	 Available: https://proceedings.neurips.cc/paper/2020/fil
e/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf

[7] 	 M. Drumond, et. Al., “Training DNNs with hybrid block
floating point”, in Neural Information Processing Systems
(NIPS), 2018

	 Available: https://papers.nips.cc/paper/2018/file/6a9aed
dfc689c1d0e3b9ccc3ab651bc5-Paper.pdf

With its high arithmetic density, the Intel Stratix 10 NX FPGA
delivers features that are critical for high-performance,
latency-sensitive AI systems where real achievable
performance is a key differentiator.

Batch Size
Intel® Stratix® 10 NX

Performance Advantage
over NVIDIA T4

Intel Stratix 10 NX
Performance Advantage

over NVIDIA V100

3 22.3X 9.3X

6 24.2X 11.7X

Batch Size
Sequence

Length

Intel Stratix 10
NX Performance
Advantage over

NVIDIA T4

Intel Stratix 10
NX Performance
Advantage over

NVIDIA V100

6 8 16X - 19X 15X - 25X

6 256 11X - 16X 5X - 6X

  Please Recycle

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more information about performance and benchmark results, visit www.intel.com/benchmarks.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a nonexclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products described may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on

request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

WP-01307-1.0

https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/nx.html
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-fpga-vs-gpu-ai-conference-paper.html
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-fpga-vs-gpu-ai-conference-paper.html
http://www.intel.com/scalable-compute-fpga
https://www.youtube.com/watch?v=WxWh5U4NTOY
https://www.youtube.com/watch?v=WxWh5U4NTOY
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://papers.nips.cc/paper/2018/file/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Paper.pdf
https://papers.nips.cc/paper/2018/file/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Paper.pdf

