
Introduction
The innovative Intel® Hyperflex® FPGA Architecture features a “registers
everywhere” design that includes ubiquitous retiming and pipelining registers,
called Hyper-Registers. These Hyper-Registers are available in every routing wire
on the device. Combined with the new Intel Quartus® Prime Hyper-Aware design
flow, these Hyper-Registers allow designers to break the performance barrier,
achieving 2X the core performance in Intel Stratix 10 FPGAs and SoCs compared
to previous-generation high-performance FPGAs, with clock speeds of up to 1
GHz. To achieve this high performance, designers use three design optimization
strategies:

•	 Hyper-Retiming leverages the fine-grained nature of the Hyper-Registers. The
Intel Quartus Prime software can perform meticulous retiming operations to
balance the slack between two paths. It shifts the traditional adaptive logic
module (ALM) register to a Hyper-Register that is in a better location for timing.

•	 Hyper-Pipelining capitalizes on the fact that the delay to enter a Hyper-Register
is significantly lower than the delay to enter a conventional register. Adding
additional registers to a long routing path does not incur the significant delay
cost of routing into a logic array block (LAB) to utilize the register. Therefore,
paths can be more deeply pipelined. The Intel Quartus Prime software can move
existing pipeline registers to optimal locations, alleviating the need to break up
existing design blocks to add intermediate pipeline stages.

•	 Hyper-Optimization unlocks the high-performance potential of a design. After
the designer applies the Hyper-Retiming and Hyper-Pipelining techniques,
the design’s true critical path (for example, a computational loop) is exposed.
Retiming or pipelining techniques alone cannot improve this true critical path.
To improve performance, designers exploit parallelism in the design by applying
decomposition techniques such as Shannon’s decomposition (1) or time domain
multiplexing (TDM).

Challenges with conventional register retiming
Conventional register retiming (2) is a sequential optimization technique that
designers use to improve design performance. In this transformation, a register can
be retimed across combinational logic. The circuit’s internal sequential state may
be different, but the circuit output is functionally and provably equivalent to the
original design specification. Figure 1 shows backward and forward retiming across
combinational logic implemented in look-up-tables (LUT).

In a forward-push operation, a register is moved forward across a combinational
node. The delay that was on the register output moves to the register input.
Designers can improve the critical path at the register output at the expense of

The Quartus Prime software includes algorithms that take advantage of Stratix® 10
Hyperflex registers, resulting in extremely fast clock speeds.

Author
Gordon Chiu

Director, Software Engineering
Intel Corp.

Using Quartus® Prime Software
to Maximize Performance in the
Hyperflex® FPGA Architecture

Table of Contents

Introduction . . 1

Challenges with conventional
	 register retiming. 1

Hyper-Aware design flow. 2

Streamline exploration with the
	 Fast Forward Compile tool 3

Simplify design modifications
	 during realization 3

Conclusion. . 4

References . . 4

Where to Get More Information. . 4

White Paper
FPGA

White Paper | Using Quartus Prime Software to Maximize Performance in the Intel HyperFlex FPGA Architecture

a path at the register input. This balancing operation can
significantly improve design performance.

Conventional FPGA design flows leverage conventional
sequential register retiming in different ways, with only
moderate success. During logic synthesis, registers can be
retimed to minimize the depth of combinational logic paths in
the circuit. Because this operation is done early in the FPGA
design flow, where there is poor prediction of the final place-
and-route, the gains from this optimization are limited. Thus,
it is difficult to predict and focus on the design’s most critical
paths.

Physical synthesis, introduced in the Quartus II software in
2004, performs register retiming after placement and before
routing. Although it addresses the delay prediction problem,
leading to more targeted optimizations and improvement,
the scope of retiming operations is limited. The software still
needs to legalize the retimed register or combinational logic
placement.

Hyper-Aware design flow
The Intel Hyperflex FPGA Architecture adds a Hyper-Register
to each interconnect routing segment, significantly increasing
the number of registers available for retiming and pipelining.
To take advantage of these Hyper-Registers, Intel's design
flow for the Intel Hyperflex FPGA Architecture leverages
automated retiming optimization techniques to improve
circuit performance and suggest further enhancement.
This flow minimizes the effort traditionally spent in design
modification and iteration. The Intel Quartus Prime software
includes the following enhancements to enable the new
design flow for the Intel Hyperflex FPGA Architecture:

The Intel Quartus Prime software includes the advanced
Hyper-Retimer optimization algorithms that perform
automatic register retiming. These new algorithms achieve
high performance without the typical effort associated
with manually retiming a design for a conventional FPGA
architecture.

To improve designer productivity and accelerate the path
to high performance, the Intel Quartus Prime software
introduces the Fast Forward Compile tool, which can analyze
a design to provide step-by-step recommendations for RTL
changes to improve performance. The tool provides the
estimated performance improvement for these changes.
With these changes, such as adding pipeling stages and
removing retiming restrictions, designers can explore
performance limits in the Intel Hyperflex FPGA Architecture.

Intel has redesigned the Intel Quartus Prime synthesis and
place-and-route algorithms (making them Hyper-Aware) so
that it is easy to take advantage of the Hyper-Retimer and
Fast Forward Compile tools.

Hyper-Retiming

The Hyper-Retimer relocates existing registers to achieve
higher overall performance. Leveraging the novel Intel
Hyperflex FPGA Architecture with its ubiquitous retiming
and pipelining registers, the Intel Quartus Prime software
can make very late changes to the design’s registers: after
placement and routing. The optimizations are based on

extremely accurate delay predictions, resulting in maximum
performance.

The design flow includes Hyper-Retiming optimizations in
the Fitter, which performs register retiming at a global level,
simultaneously repositioning all registers within the design to
improve performance. Figure 2 shows the design flow for the
Intel Hyperflex FPGA Architecture.

Register repositioning is easy in the Intel Hyperflex FPGA
Architecture. Every Hyper-Register in the interconnect
routing is optionally bypassable; it can be configured as a
register or a simple wire. As a result, performing a forward-
push move (see Figure 3) is like flipping a switch–turn some
registers off and turn others on.

Hyper-Pipelining

In conventional pipelining, designers add register stages to
break up long routing paths. Designs that were originally
targeted for conventional, register-starved architectures
obtain performance improvements by inserting additional
pipeline stages into the circuit.

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

Backward
Retiming

Forward
Retiming

Figure 1. Backward and Forward Retiming

Mapping Fitting
(Plan, Place, Route, Retime)

Timing
Analysis

Fast Forward
Compile

Hyper-Aware
Tools

Figure 2. Intel Hyperflex FPGA Architecture Design Flow

Forward Push

Figure 3. Hyper-Retiming Forward Push

White Paper | Using Quartus Prime Software to Maximize Performance in the Intel HyperFlex FPGA Architecture

In a conventional design, additional pipeline stages must be
distributed throughout the design to provide a performance
benefit. This process can be time consuming to implement
and difficult to verify. Additionally, it often requires breaking
up hardware description language (HDL) logic and inserting
register stages at unnatural places in the design. It may also
require modifications to legacy intellectual property (IP)
blocks or modules, forcing design units to be re-qualified
and re-verified.

Hyper-Pipelining simplifies this process. Designers add
pipeline stages in aggregate at one place in the design and
the Intel Quartus Prime Fitter can retime the logic throughout
the circuit (see Figure 4). Hyper-Pipelining requires much less
effort than conventional, manual pipelining optimizations.

Hyper-Optimization

After removing retiming restrictions and adding pipelining
to the design, designers may need to perform further
optimization to reach high performance goals. In these
cases, designers need to find the design’s critical paths
and optimize those trouble spots. The Intel Quartus Prime
synthesis and place-and-route algorithms have been
redesigned to be Hyper-Aware: the software algorithms can
take advantage of the Intel Hyperflex FPGA Architecture. The
synthesis and place-and-route algorithms use retiming aware
models and delays to predict the true critical paths and focus
optimization efforts.

In addition to providing large performance gains, the Hyper-
Aware tools can reduce the number of conventional registers
a design uses. Moving simple registers from ALMs to the
Hyper-Registers in the interconnect routing fabric frees
valuable resources and reduces logic utilization (particularly
for highly register-dominated designs).

Streamline exploration with the Fast
Forward Compile tool
Conventional FPGA software flows stop optimizing when
they hit a performance limit, for example, a path that cannot
be improved by retiming or insufficient pipeline stages
between two fixed end points. The designer then needs to
interpret the tool’s output, decide on a course of action,
implement a design change or workaround, and re-run the
tool to continue making progress towards performance
goals. See Figure 5.

To improve designers’ efficiency, the Hyper-Aware design
flow features the Fast Forward Compile tool. When the Intel

Quartus Prime software finds a performance restriction
during exploration, the software analyzes a design to provide
step-by-step recommendations for RTL changes to improve
performance. The Fast Forward tool can analyze the effect
of removing retiming restrictions and adding pipelining
and provide an estimate of the design fMAX performance
improvement. For example, upon discovering a register
that cannot be retimed due to a restriction (such as an
asynchronous clear or a user preserve statement), the
Fast Forward Compile tool analyzes what happens if the
designer removes the restriction and provides a performance
improvement estimate for the RTL change. See Figure 6.

Similarly, upon discovering a path that can be helped by
additional pipelining, the Fast Forward Compile tool can
can analyze the performance improvement if the designer
inserts additional pipeline register stages. This register
insertion is only performed at asynchronous transfers. These
asynchronous transfers are the ingress or egress to clock
domains; they cut clock transfers from unrelated clocks or
transfers to or from I/O pins. These locations are natural
places to insert additional pipeline registers. The additional
registers can then be retimed and pipelined through the
design to improve performance.

Creating Pipeline Stages Manually

Adding Pipeline Stages in Aggregate and Using the Hyper-Retimer Tool to Migrate them through the Design

Figure 4. Hyper-Pipelining vs. Conventional Pipelining

Mapping Fitting Retiming Timing
Analysis

Tool Feedback

RTL
Changes

Find
Legal Set

Figure 5. Conventional Design Flow

Figure 6. Fast Forward Compile Recommendations

White Paper | Using Quartus Prime Software to Maximize Performance in the Intel HyperFlex FPGA Architecture

As it successively finds limits, the Fast Forward Compile tool works around the limits with proposed changes, giving an
accurate estimate of the performance based on “what if” that design change was in place. These proposed changes are
combined into a detailed recommendation list for achieving the new higher performance.

Simplify design modifications during realization
For the Intel Quartus Prime software to achieve higher levels of performance, some design changes must be realized.

•	 To achieve Hyper-Retiming performance, designers need to make changes to their reset strategy because Hyper-Registers
do not have dedicated asynchronous clear circuitry. Asynchronous clears must be converted to synchronous or removed.

•	 To achieve Hyper-Pipelining performance, designers need to add additional pipeline stages to a design.

•	 To achieve Hyper-Optimization performance, designers need to restructure large computational loops.

The Intel Quartus Prime software cannot perform reset strategy changes or insert pipeline stages automatically. Automatically
adding pipeline stages means the design would no longer match the input description (Verilog HDL or VHDL), which can cause
problems during functional verification.

Identifying and evaluating design changes (such as inserting pipeline stages) is iterative and time-consuming. Intel
recommends that designers use the Fast Forward Compile tool to analyze their design and to provide them with step-by-step
recommendations to help achieve their design performance target.

Conclusion
To support the new Intel Hyperflex FPGA Architecture, Intel introduces the novel high-performance Hyper-Aware design flow
in the Intel Quartus Prime software. Central to this flow are:

•	 Retiming algorithms that take advantage of the Hyper-Registers in the routing fabric to improve design performance after
place-and-route.

•	 The Fast Forward Compile tool that reduces designer effort and iterations by recommending and evaluating changes to
achieve high performance.

Combining these Hyper-Aware tools with the Intel Hyperflex FPGA Architecture results in 2X the core performance compared
to previous-generation high-performance FPGAs, with ultra-fast clock speeds of up to 1 GHz.

References
1	 Sovani, Cristian, Tardieu, Oliver, Edwards, Stephen A, “Optimizing Sequential Cycles Through Shannon Decomposition and Retiming,” IEEE Transactions on Computer-Aided Design
	 of Integrated Circuits and Systems, vol 26, 2006.
2	 Leiserson, Charles E., and Saxe, James B, Retiming Synchronous Circuitry, August 1986.

Where to Get More Information
For more information about Intel and Intel Stratix 10 FPGAs, visit https://www.intel.com/content/www/us/en/products/
details/fpga/stratix/10.html
1	 https://www.intel.com/content/www/us/en/secure/content-details/722716/a-new-fpga-architecture-and-leading-edge-finfet-process-technology-promise-to-meet-next-		
	 generation-system-requirements.html
2	 https://www.intel.com/content/www/us/en/content-details/775577/understanding-how-the-new-hyperflex-architecture-enables-next-generation-high-performance-systems.html

WP-01218-1.3

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at www.intel.com.

Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/secure/content-details/722716/a-new-fpga-architecture-and-leading-edge-finfet-process-technology-promise-to-meet-next-generation-system-requirements.html
https://www.intel.com/content/www/us/en/secure/content-details/722716/a-new-fpga-architecture-and-leading-edge-finfet-process-technology-promise-to-meet-next-generation-system-requirements.html
https://www.intel.com/content/www/us/en/content-details/775577/understanding-how-the-new-hyperflex-architecture-enables-next-generation-high-performance-systems.html

