
Modern distributed data center applications rely on powerful processors,
massive storage, and fast connectivity to achieve high performance and availability.
Connectivity performance has traditionally been measured in terms of latency and
throughput—that is, the average speed and quantity of data movement. As data
centers scale, a third metric becomes increasingly important: predictability.

The Challenge of Predictability at Scale
When implementing a database application, end users typically expect a response
in a given amount of time. Network architects will design the application and
network system to respond within that response time. The predictability of an
application’s response time is typically measured in terms of jitter. Jitter refers
to the variability of latency—the slight variation (earlier or later) in turnaround
time for when a response will be received—rather than the average latency in
a server. The distribution of jitter increases with scale. Thus, the tail latency,
the slow outliers in an otherwise fast system, becomes an increasing factor for
consideration as the data center scales with more servers.

For an analogy, consider flipping a coin. The odds of getting a heads on the first flip
are 1/2 or 50 percent. As you flip more coins, the probability of getting all heads
goes down exponentially: 1/2, 1/4, 1/8, 1/16, and so on. Likewise with a server-
based system, the probability of receiving every response within an acceptable
response time goes down as the number of requests increases. While the designed
likelihood of getting a response within the desired time in a server-based system
is much higher (more than 99 percent), the magnitude of trials is also much higher,
with tens, hundreds, thousands, or even tens of thousands of servers in use and
thousands of transaction requests. As a result, network designers must guard band
by limiting the number of servers assigned to a parallelized task, or by limiting the
number of end users, to stay within the desired response time.

Performance Testing Application
Device Queues (ADQ) with Redis*

Intel Connectivity
Ethernet Networking Division

Innovative Intel® Ethernet technology improves open source Redis
performance in benchmark testing.

reDuCeS
APPliCAtion
lAtenCY

iMProVeS
APPliCAtion

tHrouGHPut
inCreASeS

APPliCAtion
PreDiCtAbilitY

Solution brief

50%
99%

99%

99.9%

99.9%

Maximum Number of Servers to Meet SLA

Number of Servers

Pr
ob

ab
ili

ty
 o

f T
ot

al
 S

er
vi

ce
 L

at
en

cy

Ex
ce

ed
in

g
Ta

rg
et

 R
es

po
ns

e
Ti

m
e

(%
)

99.99%

99.99%

40%

30%

20%

10%

1 100 200 300 400 500 600 700 800 900 1,000 1,100

10 Servers
105 Servers

1,053 Servers

Probability of an Individual Server
Meeting Target Service Latency

SLA < 10% Exceeding
Target Response Time

Figure 1. Higher predictability enables more servers working
in parallel within the desired response time1

Jitter becomes a limiting factor to scalability when adding
more servers, causing system latency to exceed the user-
experience requirements (see Figure 1). This is why, at
scale, low latency and high throughput are not enough;
predictability is also required. Increasing the predictability
of application response times by lowering jitter enables
more compute servers to be assigned to a task and can allow
more users to access the system, providing a better end-
user experience. Even applications that are not large scale
can benefit from higher consistency, enabling them to meet
service-level agreements (SLAs).

Introducing Application Device Queues for
Predictable, Scalable High Performance
Application Device Queues (ADQ) is a new Intel innovation
in system-level network input/output (I/O) performance that

improves application response predictability and scalability
in a cost-effective manner. ADQ dedicates queues and
shapes traffic for the transfer of data over Ethernet for critical
applications using standard operating system networking
stacks and interfaces supplemented with Intel® hardware
technologies for improved performance. The goal of ADQ is
to ensure that high-priority applications receive predictable
high performance through dramatically reduced jitter.

Data Express Lanes

A good way to understand ADQ at a high level is by analogy
to freeway traffic. Imagine you want to get from your home to
the airport in time to make your flight. If you take the freeway
when traffic is light, the trip takes 30 minutes; but if the traffic
is heavy, it might take as long as 90 minutes. This means that,
to be safe, you need to plan 90 minutes for the trip, which
might waste up to an hour of your time. This is like a
data-application developer who, not knowing how long it
will take to receive requested data, must design around a
worst-case scenario.

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

Figure 2. ADQ is like a dedicated express lane for your application data

ADQ express way
One origin
One destination
Dedicated traffic

Home Airport

Regular Freeway
Different origins
Different destinations
Rush hour traffic

2

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

Now imagine there are dedicated express lanes available
on the freeway allocated only to people traveling from your
location to the airport. Onramps are metered, offramps are
limited, lanes are assigned, and speed is fixed so that the trip
always takes 30 minutes—unaffected by any other traffic on
its way to different destinations.

ADQ provides fast and predictable data-transfer
performance that application developers can rely on so
they, and network operators, can optimize their applications
accordingly. By creating dedicated pipes between application
threads and device queues, ADQ not only reduces
contention for resources, but it also minimizes or eliminates
synchronization operations such as locks and multi-thread
sharing. Interrupts and context switching can also add traffic
turmoil. ADQ uses busy polling to reduce the number of
interrupts and context switches. ADQ uses a combination
of these methods to improve application performance and
reduce jitter.

ADQ offers application-specific, uncontended,
smooth-flowing traffic, because there is no sharing of
traffic from other applications on these queues. Traffic
shaping reduces jitter by avoiding contention (no traffic jams),
rate-limiting traffic (metered ramps), and reducing the
number of interrupts and context switches per second (no
lane changing).

ADQ Requirements
To take full advantage of ADQ, you’ll need the latest Intel
technologies and the updated Linux* kernel, as shown in
Table 1.

Table 1. ADQ deployment requirements

Component Requirement

Application Case 1: No change (for example, Redis*)

Case 2: Reference code provided by Intel

Configuration Standard operating system tools

(Traffic configuration [TC], ethtool*)

Operating System Linux 4.19* or later

Ethernet Driver Intel® Ethernet 800 Series driver

Ethernet NIC Intel Ethernet 800 Series

Testing Redis with ADQ
Redis* is a popular open source in-memory data structure
store used by Craigslist, GitHub, Stack Overflow, Twitter,
and many others.2 It is a representative application for testing
back-end functions in both the caching and database tiers.

Users

Web

Web

Data/
Key Caching

Network Storage

Database
Back End

Load Balancer

Redis*

Figure 3. Redis* is a representative application for testing
both key caching and a database back end

Redis scales out by deploying multiple single-threaded
instances, so, by design, there is no sharing across the
isolated instances. However, other elements, such as the
networking stack, don’t necessarily extend this instance
isolation. ADQ extends instance isolation all the way down
the stack to improve performance.

Test Setup

The Redis server ran on the system under test (SUT) and
exposed as many listening ports as there were cores on the
SUT, less 2 cores for system maintenance. The Redis server
was scaled out to 94 instances composed of one master and
93 replicating read-only clones. Clients were configured with
94 instances across 11 systems. Tests were conducted at
10 different connections-per-instance rates (10–100) and
a key data size of 100 bytes, each completed with and
without ADQ enabled on the server. Each 30-second test run
was measured for throughput (requests per second),
round-trip latency (microseconds to return the request),
and predictability (variation in latency over a test run).

Client 1

Switch (Arista*)
Server (SUT)

reDiS* SerVer SoftWAre

reDiS* benCHMArK tool

Client 3

Client 5

Client 7

Client 9

Client 2

Client 4

Client 6

Client 8

Client 10 Client 11

Figure 4. Redis* testing setup

3

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

Test Results
Tests were performed for predictability, latency, and throughput, with results as follows:

Predictability Results: More Than 50 Percent Increased3

4,000

3,500

2,500

1,500

Rtt Avg—(100B) Intel® Ethernet
800 Series with ADQ "Off" Baseline

Rtt Avg—Per Conn. (100B) Intel®
Ethernet 800 Series with ADQ "On"

500

10 20 30 40 50 60 70 80 90 100

Per Client Connections/Users

Average
Latency
/Client
(usecs)

0

2,000

1,000

3,000

loWer
iS better

Figure 5. Predictability performance results (variation in latency)

A remarkable improvement in predictability is achieved, as shown by the ADQ test results on Redis.

Predictability in this chart is represented by the straightness of the ADQ line compared to the increasing jaggedness (jitter)
of the baseline results. At lower connections per instance, the difference is noticeable; and at higher connection levels, the
difference becomes dramatic. An important pattern to notice is that the ADQ line appears virtually unchanged, whereas the
baseline becomes more and more jittery when the number of connections increases.

Note that these results are only for a single-server configuration. Redis can also be configured in a cluster mode, where these
results would be expected to be even more pronounced.

Latency Results: More Than 45 Percent Lower4

3,000

2,500

2,000

500

940 1,880 2,820 3,760 4,700 5,640 6,580 7,520 8,460 9,400
0

1,000

1,500

Average Latency

Connections/Users

Average
Latency
(usecs)

Rtt Avg—(100B) Intel® Ethernet
800 Series with ADQ "Off" Baseline

Rtt Avg—(100B) Intel® Ethernet
800 Series with ADQ "On"

loWer
iS better

Figure 6. Latency performance results

Both the baseline and ADQ test configurations, not surprisingly, showed increasing average latency as the load increased. But
the ADQ latency was lower in every case, and the rate at which the latency increased using ADQ was remarkably lower.

4

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

Throughput Results: More Than 30 Percent Improved5

Connections/Users

Request
Rate/second

Req Rate—(100B) Intel® Ethernet
800 Series with ADQ "Off" Baseline

Req Rate—(100B) Intel® Ethernet
800 Series with ADQ "On"

HiGHer
iS better

Throughput
9,000,000,

8,000,000,

7,000,000,

6,000,000,

5,000,000,

4,000,000,

3,000,000,

2,000,000,

1,000,000,

0
940 1,880 2,820 3,760 4,700 5,640 6,580 7,520 8,460 9,400

Figure 7. Throughput performance results

Final Analysis
Tests clearly show that implementing ADQ on a system running Redis in a single-server configuration increases application
predictability (by reducing jitter) by more than 50 percent, reduces application latency by more than 45 percent, and improves
application throughput by more than 30 percent. Throughput improvements were fairly consistent across loads, and average
latency and predictability showed significantly better improvements at higher loads (connections per instance).

ADQ improves performance in a number of ways. ADQ provides improved throughput and lower latency, which will benefit
most applications. The dramatic improvement in network predictability is of critical importance as data centers reach large
scale, but it is also an advantage for scaling a wide range of applications because it enables more servers to be added to a
compute problem or more end users to be served, providing greater consistency in meeting SLAs.

Learn More

Contact your Intel sales representative or distributor for more details about ADQ.

5

Table 2. Details of the test equipment and configuration

 Client SUT

Test By Intel Intel

Test Date 2/11/2019 2/11/2019

Platform Dell PowerEdge* R720 Intel® Server Board S2600WFTF

Nodes 11 1

Sockets 2 2

CPU Intel® Xeon® processor E5-2697 v2 @ 2.7 GHz 2nd Generation Intel® Xeon® Platinum 8268 processor
@ 2.8 GHz

Cores/Socket, Threads/Socket 12/24 24/48

ucode 0x428 0x3000009

Intel® Hyper-Threading
Technology (Intel® HT
Technology)

On On

Intel® Turbo Boost Technology On On

BIOS Version 2.5.4 SE5C620.86B.01.00.0833.051120182255

System DDR Mem Config:
slots/cap/run-speed

16 slots/128 GB/1,600 megatransfers per
second (MT/s)

8 slots/128 GB/2,400 MT/s

System DCPMM Config: slots/
cap/run-speed

– 2 slots/1,024 GB

Total Memory/Node
(DDR+DCPMM)

128 GB 1,024 GB

Storage—boot 1x Dell* (OS Drive 512 GB) 1x Intel® SSD (OS Drive 64 GB)

Storage—application drives – –

NIC 1x Intel® Ethernet Converged Network
Adapter X520-DA2

1x Intel® Ethernet Network Adapter E810-CQDA2

PCH Intel® C600 Series Chipset Intel® C620 Series Chipset

Other HW (Accelerator)

OS CentOS* 7.4 CentOS 7.6

Kernel 3.10.0-693.21.1.el7 4.19.18 (Linux.org Stable)

IBRS (0=disable, 1=enable) 0 1

eIBRS (0=disable, 1=enable) 0 0

Retpoline (0=disable, 1=enable) 0 1

IBPB (0=disable, 1=enable) 0 1

PTI (0=disable, 1=enable) 1 1

Mitigation Variants (1,2,3,3a,4,
L1TF)

1,2,3,L1TF 1,2,3,L1TF

Workload & Version Redis-benchmark 4.0.10 Redis 4.0.10

Compiler – gcc (GCC) 4.8.5 20150623

NIC Driver Intel® Ethernet 500 Series ixgbe 4.4.0-k-rh7.4 Intel® Ethernet 800 Series ice Alpha 0.8.15

Redis* Configuration Redis-benchmark v4.0.10 + Enhanced
reporting patch

94 instances spread across 11 systems

Connections per instance: 10 to 100

Key range: 10000

Duration: 30 seconds

GET key distribution: random

Data size: 100 bytes

 Redis-Server: v4.0.10 malloc=jemalloc-4.0.3 bits=64
build=43de2cb93108516d

 94 Redis instances in a HA cluster with one master.

 Memory store only, no DB persistance, no evictions

 Connections per instance: 10 to 100

 Transaction rate: Unlimited

 nTuple configured for each instance

 ADQ enabled for Intel® Ethernet Network Adapter
E810-CQDA2

Network Switch: Arista 7060CX Connected at 10G Connected at 100G

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

6

7

Solution Brief | Performance Testing Application Device Queues (ADQ) with Redis*

1 Jeffrey Dean and Luiz Andrée Barroso. “The Tail at Scale.” Communications of the ACM. February 2013. https://cseweb.ucsd.edu/~gmporter/classes/fa17/cse124/post/schedule/p74-dean.pdf.
2 Redis. “Who’s using Redis?” January 2019. https://redis.io/topics/whos-using-redis.
3 >50% predictability improvement with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal

testing as of February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2).
Calculation: (new - old) / old x 100% for reduction in variance of Standard Deviation of Rtt Average Latency across all runs (10 to 100) for baseline vs ADQ.
(229-739)/739 * 100% = -69% Reduction in Variance.

4 >45% latency reduction with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal testing as of
February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2).
Calculation: (new - old) / old x 100% for Rtt Average Latency across all runs for baseline vs ADQ (382-1249)/1249 * 100% = -69% Reduction in Rtt Average Latency.

5 >30% throughput improvement with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal testing
as of February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2).
Calculation: (new - old) / old x 100% for Average Transaction Request Rate across all runs for baseline vs ADQ (79601-44345)/44345 * 100% = 80% Throughput Improvement.

Performance results are based on testing as of February 2019 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit intel.com/benchmarks.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.
Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice. Notice Revision #20110804
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© 2019 Intel Corporation.
Printed in USA 0319/TK/PRW/PDF Please Recycle 338670-001US

https://cseweb.ucsd.edu/~gmporter/classes/fa17/cse124/post/schedule/p74-dean.pdf
https://redis.io/topics/whos-using-redis
http://intel.com/benchmarks
http://intel.com

