
Modern distributed data center applications rely on powerful processors,  
massive storage, and fast connectivity to achieve high performance and availability. 
Connectivity performance has traditionally been measured in terms of latency and 
throughput—that is, the average speed and quantity of data movement. As data 
centers scale, a third metric becomes increasingly important: predictability.

The Challenge of Predictability at Scale
When implementing a database application, end users typically expect a response 
in a given amount of time. Network architects will design the application and 
network system to respond within that response time. The predictability of an 
application’s response time is typically measured in terms of jitter. Jitter refers 
to the variability of latency—the slight variation (earlier or later) in turnaround 
time for when a response will be received—rather than the average latency in 
a server. The distribution of jitter increases with scale. Thus, the tail latency, 
the slow outliers in an otherwise fast system, becomes an increasing factor for 
consideration as the data center scales with more servers.

For an analogy, consider flipping a coin. The odds of getting a heads on the first flip 
are 1/2 or 50 percent. As you flip more coins, the probability of getting all heads 
goes down exponentially: 1/2, 1/4, 1/8, 1/16, and so on. Likewise with a server-
based system, the probability of receiving every response within an acceptable 
response time goes down as the number of requests increases. While the designed 
likelihood of getting a response within the desired time in a server-based system 
is much higher (more than 99 percent), the magnitude of trials is also much higher, 
with tens, hundreds, thousands, or even tens of thousands of servers in use and 
thousands of transaction requests. As a result, network designers must guard band 
by limiting the number of servers assigned to a parallelized task, or by limiting the 
number of end users, to stay within the desired response time.
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Figure 1. Higher predictability enables more servers working  
in parallel within the desired response time1

Jitter becomes a limiting factor to scalability when adding 
more servers, causing system latency to exceed the user-
experience requirements (see Figure 1). This is why, at 
scale, low latency and high throughput are not enough; 
predictability is also required. Increasing the predictability 
of application response times by lowering jitter enables 
more compute servers to be assigned to a task and can allow 
more users to access the system, providing a better end-
user experience. Even applications that are not large scale 
can benefit from higher consistency, enabling them to meet 
service-level agreements (SLAs).

Introducing Application Device Queues for 
Predictable, Scalable High Performance
Application Device Queues (ADQ) is a new Intel innovation 
in system-level network input/output (I/O) performance that 

improves application response predictability and scalability 
in a cost-effective manner. ADQ dedicates queues and 
shapes traffic for the transfer of data over Ethernet for critical 
applications using standard operating system networking 
stacks and interfaces supplemented with Intel® hardware 
technologies for improved performance. The goal of ADQ is 
to ensure that high-priority applications receive predictable 
high performance through dramatically reduced jitter.

Data Express Lanes

A good way to understand ADQ at a high level is by analogy 
to freeway traffic. Imagine you want to get from your home to 
the airport in time to make your flight. If you take the freeway 
when traffic is light, the trip takes 30 minutes; but if the traffic 
is heavy, it might take as long as 90 minutes. This means that, 
to be safe, you need to plan 90 minutes for the trip, which 
might waste up to an hour of your time. This is like a  
data-application developer who, not knowing how long it  
will take to receive requested data, must design around a 
worst-case scenario.
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Figure 2. ADQ is like a dedicated express lane for your application data
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Now imagine there are dedicated express lanes available 
on the freeway allocated only to people traveling from your 
location to the airport. Onramps are metered, offramps are 
limited, lanes are assigned, and speed is fixed so that the trip 
always takes 30 minutes—unaffected by any other traffic on 
its way to different destinations.

ADQ provides fast and predictable data-transfer 
performance that application developers can rely on so 
they, and network operators, can optimize their applications 
accordingly. By creating dedicated pipes between application 
threads and device queues, ADQ not only reduces 
contention for resources, but it also minimizes or eliminates 
synchronization operations such as locks and multi-thread 
sharing. Interrupts and context switching can also add traffic 
turmoil. ADQ uses busy polling to reduce the number of 
interrupts and context switches. ADQ uses a combination 
of these methods to improve application performance and 
reduce jitter.

ADQ offers application-specific, uncontended,  
smooth-flowing traffic, because there is no sharing of  
traffic from other applications on these queues. Traffic 
shaping reduces jitter by avoiding contention (no traffic jams),  
rate-limiting traffic (metered ramps), and reducing the 
number of interrupts and context switches per second (no 
lane changing).

ADQ Requirements
To take full advantage of ADQ, you’ll need the latest Intel 
technologies and the updated Linux* kernel, as shown in 
Table 1.

Table 1. ADQ deployment requirements 

Component Requirement

Application Case 1: No change (for example, Redis*)

Case 2: Reference code provided by Intel

Configuration Standard operating system tools

(Traffic configuration [TC], ethtool*)

Operating System Linux 4.19* or later

Ethernet Driver Intel® Ethernet 800 Series driver

Ethernet NIC Intel Ethernet 800 Series

Testing Redis with ADQ
Redis* is a popular open source in-memory data structure 
store used by Craigslist, GitHub, Stack Overflow, Twitter, 
and many others.2 It is a representative application for testing 
back-end functions in both the caching and database tiers.
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Figure 3. Redis* is a representative application for testing 
both key caching and a database back end

Redis scales out by deploying multiple single-threaded 
instances, so, by design, there is no sharing across the 
isolated instances. However, other elements, such as the 
networking stack, don’t necessarily extend this instance 
isolation. ADQ extends instance isolation all the way down 
the stack to improve performance.

Test Setup 

The Redis server ran on the system under test (SUT) and 
exposed as many listening ports as there were cores on the 
SUT, less 2 cores for system maintenance. The Redis server 
was scaled out to 94 instances composed of one master and 
93 replicating read-only clones. Clients were configured with 
94 instances across 11 systems. Tests were conducted at  
10 different connections-per-instance rates (10–100) and  
a key data size of 100 bytes, each completed with and 
without ADQ enabled on the server. Each 30-second test run 
was measured for throughput (requests per second),   
round-trip latency (microseconds to return the request),  
and predictability (variation in latency over a test run).
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Figure 4. Redis* testing setup
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Test Results 
Tests were performed for predictability, latency, and throughput, with results as follows:

Predictability Results: More Than 50 Percent Increased3
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Figure 5. Predictability performance results (variation in latency)

A remarkable improvement in predictability is achieved, as shown by the ADQ test results on Redis.

Predictability in this chart is represented by the straightness of the ADQ line compared to the increasing jaggedness (jitter) 
of the baseline results. At lower connections per instance, the difference is noticeable; and at higher connection levels, the 
difference becomes dramatic. An important pattern to notice is that the ADQ line appears virtually unchanged, whereas the 
baseline becomes more and more jittery when the number of connections increases.

Note that these results are only for a single-server configuration. Redis can also be configured in a cluster mode, where these 
results would be expected to be even more pronounced.

Latency Results: More Than 45 Percent Lower4
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Figure 6. Latency performance results

Both the baseline and ADQ test configurations, not surprisingly, showed increasing average latency as the load increased. But 
the ADQ latency was lower in every case, and the rate at which the latency increased using ADQ was remarkably lower.
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Throughput Results: More Than 30 Percent Improved5 
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Figure 7. Throughput performance results

Final Analysis
Tests clearly show that implementing ADQ on a system running Redis in a single-server configuration increases application 
predictability (by reducing jitter) by more than 50 percent, reduces application latency by more than 45 percent, and improves 
application throughput by more than 30 percent. Throughput improvements were fairly consistent across loads, and average 
latency and predictability showed significantly better improvements at higher loads (connections per instance).

ADQ improves performance in a number of ways. ADQ provides improved throughput and lower latency, which will benefit 
most applications. The dramatic improvement in network predictability is of critical importance as data centers reach large 
scale, but it is also an advantage for scaling a wide range of applications because it enables more servers to be added to a 
compute problem or more end users to be served, providing greater consistency in meeting SLAs.

Learn More

Contact your Intel sales representative or distributor for more details about ADQ.
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Table 2. Details of the test equipment and configuration

 Client SUT

Test By Intel Intel

Test Date 2/11/2019 2/11/2019

Platform Dell PowerEdge* R720 Intel® Server Board S2600WFTF

# Nodes 11 1

# Sockets 2 2

CPU Intel® Xeon® processor E5-2697 v2 @ 2.7 GHz 2nd Generation Intel® Xeon® Platinum 8268 processor 
@ 2.8 GHz

Cores/Socket, Threads/Socket 12/24 24/48

ucode 0x428 0x3000009

Intel® Hyper-Threading 
Technology (Intel® HT 
Technology)

On On

Intel® Turbo Boost Technology On On 

BIOS Version  2.5.4  SE5C620.86B.01.00.0833.051120182255

System DDR Mem Config:  
slots/cap/run-speed

16 slots/128 GB/1,600 megatransfers per 
second (MT/s)

8 slots/128 GB/2,400 MT/s

System DCPMM Config: slots/ 
cap/run-speed

– 2 slots/1,024 GB

Total Memory/Node 
(DDR+DCPMM)

128 GB 1,024 GB

Storage—boot 1x Dell* (OS Drive 512 GB) 1x Intel® SSD (OS Drive 64 GB)

Storage—application drives – –

NIC 1x Intel® Ethernet Converged Network  
Adapter X520-DA2

1x Intel® Ethernet Network Adapter E810-CQDA2

PCH Intel® C600 Series Chipset Intel® C620 Series Chipset

Other HW (Accelerator)   

OS CentOS* 7.4 CentOS 7.6

Kernel 3.10.0-693.21.1.el7 4.19.18 (Linux.org Stable)

IBRS (0=disable, 1=enable) 0 1

eIBRS (0=disable, 1=enable) 0 0

Retpoline (0=disable, 1=enable) 0 1

IBPB (0=disable, 1=enable) 0 1

PTI (0=disable, 1=enable) 1 1

Mitigation Variants (1,2,3,3a,4, 
L1TF)

1,2,3,L1TF 1,2,3,L1TF

Workload & Version Redis-benchmark 4.0.10 Redis 4.0.10

Compiler – gcc (GCC) 4.8.5 20150623

NIC Driver Intel® Ethernet 500 Series ixgbe 4.4.0-k-rh7.4 Intel® Ethernet 800 Series ice Alpha 0.8.15

Redis* Configuration Redis-benchmark v4.0.10 + Enhanced  
reporting patch

94 instances spread across 11 systems

Connections per instance: 10 to 100

Key range: 10000

Duration: 30 seconds

GET key distribution: random

Data size: 100 bytes

  Redis-Server: v4.0.10 malloc=jemalloc-4.0.3 bits=64 
build=43de2cb93108516d

 94 Redis instances in a HA cluster with one master.

 Memory store only, no DB persistance, no evictions

 Connections per instance: 10 to 100

 Transaction rate: Unlimited

 nTuple configured for each instance

   ADQ enabled for Intel® Ethernet Network Adapter 
E810-CQDA2

Network Switch: Arista 7060CX Connected at 10G Connected at 100G
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1  Jeffrey Dean and Luiz Andrée Barroso. “The Tail at Scale.” Communications of the ACM. February 2013. https://cseweb.ucsd.edu/~gmporter/classes/fa17/cse124/post/schedule/p74-dean.pdf.
2  Redis. “Who’s using Redis?” January 2019. https://redis.io/topics/whos-using-redis.
3  >50% predictability improvement with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal 

testing as of February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2). 
Calculation: (new - old) / old x 100%  for reduction in variance of Standard Deviation of Rtt Average Latency across all runs (10 to 100) for baseline vs ADQ.  
(229-739)/739 * 100% = -69% Reduction in Variance.

4   >45% latency reduction with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal testing as of 
February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2).  
Calculation: (new - old) / old x 100% for Rtt Average Latency across all runs for baseline vs ADQ  (382-1249)/1249 * 100% = -69% Reduction in Rtt Average Latency.

5   >30% throughput improvement with open source Redis* using 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series with ADQ vs. without ADQ. Source: Intel internal testing 
as of February 2019; open source Redis on 2nd Gen Intel® Xeon® Scalable processors and Intel® Ethernet 800 Series, 100 GbE on Linux* 4.19.18 kernel (see Table 2).  
Calculation: (new - old) / old x 100% for Average Transaction Request Rate across all runs for baseline vs ADQ  (79601-44345)/44345 * 100% = 80%  Throughput Improvement.

Performance results are based on testing as of February 2019 and may not reflect all publicly available security updates. See configuration disclosure for details.  
No product can be absolutely secure.
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